In situ study of partially crystallized Bioglass and hydroxylapatite in vitro bioactivity using atomic force microscopy.

نویسندگان

  • I B Leonor
  • A Ito
  • K Onuma
  • N Kanzaki
  • Z P Zhong
  • D Greenspan
  • R L Reis
چکیده

The present work investigates, in situ, the in vitro bioactivity of partially crystallized 45S5 Bioglass (BG) as a function of immersion time in a simulated body fluid (SBF) using atomic force microscopy (AFM). The results obtained for the crystallized BG were compared to those of hydroxyapatite c- and a-faces. The calcium phosphate layer grows on the crystallized 45S5 B by multiple two-dimensional nucleation and fusion of these two-dimensional islands, which is essentially the same mode as for the hydroxyapatite c-face. The surface of the crystallized 45S5 BG was almost fully covered with a dense and compact calcium phosphate layer after 24 h. The calcium phosphate formation on the crystallized BG arises from a low surface energy of the surface layer and/or an effect of the layer to lower the resistance when the growth units of calcium phosphate incorporate into the growing island. These results indicate that the crystallized 45S5 BG is suitable to be used as a filler for polymeric matrix bioactive composites, as it maintains a high bioactivity associated with a stiffer behavior (as compared to standard BG).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Treatment Of Cobalt-Base Alloy Surgical Implants With Hydroxyapatite-Bioglass For Surface Bioactivation

ASTM F-75 Cobalt-base alloy castings are widely used for manufacturing orthopedic implants. This alloy needs both homogenization and solutionizing heat treatment after casting, as well as bioactivation of the surface to increase the ability of tissue bonding. In this study, ASTM F-75 Cobalt-base substrate was heat treated at 1220°C for 1 hour in contact with Hydroxyapatite-Bioglass powder in or...

متن کامل

In vitro bioactivity of titanium-doped bioglass.

Previous studies have suggested that incorporating relatively small quantities of titanium dioxide into bioactive glasses may result in an increase in bioactivity and hydroxyapatite formation. The present work therefore investigated the in vitro bioactivity of a titanium doped bioglass and compared the results with 45S5 bioglass. Apatite formation was evaluated for bioglass and Ti-bioglass in t...

متن کامل

Simultaneous dissolution of hydroxylapatite and precipitation of hydroxypyromorphite: Direct evidence of homogeneous nucleation

Results of in situ atomic force microscopy (AFM), ex situ AFM, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and x-ray diffraction were combined with previous macroscopic investigations to characterize aqueous Pb(NO3)2 reaction with hydroxylapatite (Ca5(PO4)3OH) (HAP). Experiments were conducted by immersing particulate HAP crystals in the AFM fluid cell in s...

متن کامل

Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites.

This work investigated the effect of adding nanoparticulate (29 nm) bioactive glass particles on the bioactivity, degradation and in vitro cytocompatibility of poly(3-hydroxybutyrate) (P(3HB)) composites/nano-sized bioactive glass (n-BG). Two different concentrations (10 and 20 wt %) of nanoscale bioactive glass particles of 45S5 Bioglass composition were used to prepare composite films. Severa...

متن کامل

A novel fabrication of PVA/Alginate-Bioglass electrospun for biomedical engineering application

Objecttive (s): Polyvinylalcohol (PVA) is among the most natural polymers which have interesting properties such as nontoxic nature, biodegradability and high resistance to bacterial attacks making it applicable for tissue scaffolds, protective clothing, and wound healing.Materials and Methods: In the current work, PVA and Na-Alginate nanocomposite scaffolds were prepared using the electrospinn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research

دوره 62 1  شماره 

صفحات  -

تاریخ انتشار 2002